Cargando…
Collaborative Multi-Expert Active Learning for Mobile Health Monitoring: Architecture, Algorithms, and Evaluation
Mobile health monitoring plays a central role in the future of cyber physical systems (CPS) for healthcare applications. Such monitoring systems need to process user data accurately. Unlike in other human-centered CPS, in healthcare CPS, the user functions in multiple roles all at the same time: as...
Autores principales: | Saeedi, Ramyar, Sasani, Keyvan, Gebremedhin, Assefaw H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180555/ https://www.ncbi.nlm.nih.gov/pubmed/32235652 http://dx.doi.org/10.3390/s20071932 |
Ejemplares similares
-
An Architecture for Collaborative Terrain Sketching with Mobile Devices
por: Mendoza, Sonia, et al.
Publicado: (2021) -
RepeatAnalyzer: a tool for analysing and managing short-sequence repeat data
por: Catanese, Helen N., et al.
Publicado: (2016) -
A nearest-neighbors network model for sequence data reveals new insight into genotype distribution of a pathogen
por: Catanese, Helen N., et al.
Publicado: (2018) -
A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms
por: Rghioui, Amine, et al.
Publicado: (2020) -
Addressing multi‐site functional MRI heterogeneity through dual‐expert collaborative learning for brain disease identification
por: Fang, Yuqi, et al.
Publicado: (2023)