Cargando…

A Trajectory Collaboration Based Map Matching Approach for Low-Sampling-Rate GPS Trajectories

GPS (Global Positioning System) trajectories with low sampling rates are prevalent in many applications. However, current map matching methods do not perform well for low-sampling-rate GPS trajectories due to the large uncertainty between consecutive GPS points. In this paper, a collaborative map ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Bian, Wentao, Cui, Ge, Wang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180571/
https://www.ncbi.nlm.nih.gov/pubmed/32268569
http://dx.doi.org/10.3390/s20072057
Descripción
Sumario:GPS (Global Positioning System) trajectories with low sampling rates are prevalent in many applications. However, current map matching methods do not perform well for low-sampling-rate GPS trajectories due to the large uncertainty between consecutive GPS points. In this paper, a collaborative map matching method (CMM) is proposed for low-sampling-rate GPS trajectories. CMM processes GPS trajectories in batches. First, it groups similar GPS trajectories into clusters and then supplements the missing information by resampling. A collaborative GPS trajectory is then extracted for each cluster and matched to the road network, based on longest common subsequence (LCSS) distance. Experiments are conducted on a real GPS trajectory dataset and a simulated GPS trajectory dataset. The results show that the proposed CMM outperforms the baseline methods in both, effectiveness and efficiency.