Cargando…

Feature-First Add-On for Trajectory Simplification in Lifelog Applications

Lifelog is a record of one’s personal experiences in daily lives. User’s location is one of the most common information for logging a human’s life. By understanding one’s spatial mobility we can figure out other pieces of context such as businesses and activities. With GPS technology we can collect...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, JunSeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180601/
https://www.ncbi.nlm.nih.gov/pubmed/32230791
http://dx.doi.org/10.3390/s20071852
Descripción
Sumario:Lifelog is a record of one’s personal experiences in daily lives. User’s location is one of the most common information for logging a human’s life. By understanding one’s spatial mobility we can figure out other pieces of context such as businesses and activities. With GPS technology we can collect accurate spatial and temporal details of a movement. However, most GPS receivers generate a huge amount of data making it difficult to process and store such data. In this paper, we develop a generic add-on algorithm, feature-first trajectory simplification, to simplify trajectory data in lifelog applications. It is based on a simple sliding window mechanism counting occurrence of certain conditions. By automatically identifying feature points such as signal lost and found, stall, and turn, the proposed scheme provides rich context more than spatio-temporal information of a trajectory. In experiments with a case study of commuting in personal vehicles, we evaluate the effectiveness of the scheme. We find the proposed scheme significantly enhances existing simplification algorithms preserving much richer context of a trajectory.