Cargando…
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3
Automatic fruit detection is a very important benefit of harvesting robots. However, complicated environment conditions, such as illumination variation, branch, and leaf occlusion as well as tomato overlap, have made fruit detection very challenging. In this study, an improved tomato detection model...
Autores principales: | Liu, Guoxu, Nouaze, Joseph Christian, Touko Mbouembe, Philippe Lyonel, Kim, Jae Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180616/ https://www.ncbi.nlm.nih.gov/pubmed/32290173 http://dx.doi.org/10.3390/s20072145 |
Ejemplares similares
-
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment
por: Mbouembe, Philippe Lyonel Touko, et al.
Publicado: (2023) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022) -
CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism
por: Appe, Seetharam Nagesh, et al.
Publicado: (2023) -
Platelet Detection Based on Improved YOLO_v3
por: Liu, Renting, et al.
Publicado: (2022) -
Tomato detection based on modified YOLOv3 framework
por: Lawal, Mubashiru Olarewaju
Publicado: (2021)