Cargando…
GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction
The vibration signal of an early rolling bearing is nonstationary and nonlinear, and the fault signal is weak and difficult to extract. To address this problem, this paper proposes a genetic mutation particle swarm optimization variational mode decomposition (GMPSO-VMD) algorithm and applies it to r...
Autores principales: | Ding, Jiakai, Huang, Liangpei, Xiao, Dongming, Li, Xuejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180732/ https://www.ncbi.nlm.nih.gov/pubmed/32244305 http://dx.doi.org/10.3390/s20071946 |
Ejemplares similares
-
A Rolling Bearing Fault Feature Extraction Algorithm Based on IPOA-VMD and MOMEDA
por: Yi, Kang, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
Rolling Bearing Fault Diagnosis Based on WOA-VMD-MPE and MPSO-LSSVM
por: Jin, Zhihao, et al.
Publicado: (2022) -
A Rolling Bearing Fault Diagnosis Method Based on the WOA-VMD and the GAT
por: Wang, Yaping, et al.
Publicado: (2023)