Cargando…
Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV’s Autonomous Motion Planning in Complex Unknown Environments
Autonomous motion planning (AMP) of unmanned aerial vehicles (UAVs) is aimed at enabling a UAV to safely fly to the target without human intervention. Recently, several emerging deep reinforcement learning (DRL) methods have been employed to address the AMP problem in some simplified environments, a...
Autores principales: | Hu, Zijian, Wan, Kaifang, Gao, Xiaoguang, Zhai, Yiwei, Wang, Qianglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180781/ https://www.ncbi.nlm.nih.gov/pubmed/32235308 http://dx.doi.org/10.3390/s20071890 |
Ejemplares similares
-
An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning
por: Wan, Kaifang, et al.
Publicado: (2021) -
Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments
por: Doukhi, Oualid, et al.
Publicado: (2021) -
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
por: Xie, Jingyi, et al.
Publicado: (2020) -
An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
por: Ramezani Dooraki, Amir, et al.
Publicado: (2018) -
A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning
por: Li, Ke, et al.
Publicado: (2021)