Cargando…
A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies
We explore a one-stage method for surface anomaly detection in industrial scenarios. On one side, encoder-decoder segmentation network is constructed to capture small targets as much as possible, and then dual background suppression mechanisms are designed to reduce noise patterns in coarse and fine...
Autores principales: | Liu, Gaokai, Yang, Ning, Guo, Lei, Guo, Shiping, Chen, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180796/ https://www.ncbi.nlm.nih.gov/pubmed/32218357 http://dx.doi.org/10.3390/s20071829 |
Ejemplares similares
-
Structured Background Modeling for Hyperspectral Anomaly Detection
por: Li, Fei, et al.
Publicado: (2018) -
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field
por: Christiansen, Peter, et al.
Publicado: (2016) -
Two-and four-dimensional anomalies with an instanton background
por: Forte, Stefano
Publicado: (1986) -
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015) -
Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
por: Zhang, Minghu, et al.
Publicado: (2020)