Cargando…
A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices
This paper proposes a classifier designed for human facial feature annotation, which is capable of running on relatively cheap, low power consumption autonomous microcomputer systems. An autonomous system is one that depends only on locally available hardware and software—for example, it does not us...
Autor principal: | Hachaj, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180797/ https://www.ncbi.nlm.nih.gov/pubmed/32290174 http://dx.doi.org/10.3390/s20072140 |
Ejemplares similares
-
Energy harvesting for low-power autonomous devices and systems
por: Rastegar, Jahangir, et al.
Publicado: (2016) -
Potential Obstacle Detection Using RGB to Depth Image Encoder–Decoder Network: Application to Unmanned Aerial Vehicles
por: Hachaj, Tomasz
Publicado: (2022) -
Adaptable 2D to 3D Stereo Vision Image Conversion Based on a Deep Convolutional Neural Network and Fast Inpaint Algorithm
por: Hachaj, Tomasz
Publicado: (2023) -
Artificial optical synaptic devices with ultra-low power consumption
por: Li, Guoqiang
Publicado: (2023) -
Image Hashtag Recommendations Using a Voting Deep Neural Network and Associative Rules Mining Approach
por: Hachaj, Tomasz, et al.
Publicado: (2020)