Cargando…
3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network
State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180802/ https://www.ncbi.nlm.nih.gov/pubmed/32260316 http://dx.doi.org/10.3390/s20072025 |
_version_ | 1783525903446310912 |
---|---|
author | Kulikajevas, Audrius Maskeliūnas, Rytis Damaševičius, Robertas Ho, Edmond S. L. |
author_facet | Kulikajevas, Audrius Maskeliūnas, Rytis Damaševičius, Robertas Ho, Edmond S. L. |
author_sort | Kulikajevas, Audrius |
collection | PubMed |
description | State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53% which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process. |
format | Online Article Text |
id | pubmed-7180802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71808022020-05-01 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network Kulikajevas, Audrius Maskeliūnas, Rytis Damaševičius, Robertas Ho, Edmond S. L. Sensors (Basel) Article State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53% which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process. MDPI 2020-04-03 /pmc/articles/PMC7180802/ /pubmed/32260316 http://dx.doi.org/10.3390/s20072025 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kulikajevas, Audrius Maskeliūnas, Rytis Damaševičius, Robertas Ho, Edmond S. L. 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title | 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title_full | 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title_fullStr | 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title_full_unstemmed | 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title_short | 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network |
title_sort | 3d object reconstruction from imperfect depth data using extended yolov3 network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180802/ https://www.ncbi.nlm.nih.gov/pubmed/32260316 http://dx.doi.org/10.3390/s20072025 |
work_keys_str_mv | AT kulikajevasaudrius 3dobjectreconstructionfromimperfectdepthdatausingextendedyolov3network AT maskeliunasrytis 3dobjectreconstructionfromimperfectdepthdatausingextendedyolov3network AT damaseviciusrobertas 3dobjectreconstructionfromimperfectdepthdatausingextendedyolov3network AT hoedmondsl 3dobjectreconstructionfromimperfectdepthdatausingextendedyolov3network |