Cargando…
A New Model for Predicting Rate of Penetration Using an Artificial Neural Network
The drilling rate of penetration (ROP) is defined as the speed of drilling through rock under the bit. ROP is affected by different interconnected factors, which makes it very difficult to infer the mutual effect of each individual parameter. A robust ROP is required to understand the complexity of...
Autores principales: | Elkatatny, Salaheldin, Al-AbdulJabbar, Ahmed, Abdelgawad, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180845/ https://www.ncbi.nlm.nih.gov/pubmed/32268597 http://dx.doi.org/10.3390/s20072058 |
Ejemplares similares
-
Real-Time Prediction of Rate of Penetration in S-Shape Well Profile Using Artificial Intelligence Models
por: Elkatatny, Salaheldin
Publicado: (2020) -
Newly Developed Correlations to Predict the Rheological Parameters of High-Bentonite Drilling Fluid Using Neural Networks
por: Gowida, Ahmed, et al.
Publicado: (2020) -
Improved Tracking of the Rheological Properties of
Max-Bridge Oil-Based Mud Using Artificial Neural Networks
por: Alsabaa, Ahmed, et al.
Publicado: (2021) -
Estimation of rocks’ failure parameters from drilling data by using artificial neural network
por: Siddig, Osama, et al.
Publicado: (2023) -
Real-time rate of penetration prediction for motorized bottom hole assembly using machine learning methods
por: Shokry, Amir, et al.
Publicado: (2023)