Cargando…

Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model

The actual fluid form of an electrolyte in a molecular electronic converter is an important factor that causes a decrease in the accuracy of a molecular electronic transducer (MET) liquid motion sensor. To study the actual fluid morphology of an inertial electrolyte in molecular electron transducers...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiuzhan, He, Qi, Chen, Yuzhu, Bao, Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180877/
https://www.ncbi.nlm.nih.gov/pubmed/32290329
http://dx.doi.org/10.3390/s20072154
_version_ 1783525921256374272
author Zhou, Qiuzhan
He, Qi
Chen, Yuzhu
Bao, Xue
author_facet Zhou, Qiuzhan
He, Qi
Chen, Yuzhu
Bao, Xue
author_sort Zhou, Qiuzhan
collection PubMed
description The actual fluid form of an electrolyte in a molecular electronic converter is an important factor that causes a decrease in the accuracy of a molecular electronic transducer (MET) liquid motion sensor. To study the actual fluid morphology of an inertial electrolyte in molecular electron transducers, an inlet effect is defined according to the fluid morphology of turbulent-laminar flow, and a numerical simulation model of turbulent-laminar flow is proposed. Based on the turbulent-laminar flow model, this paper studies the variation of the inlet effect intensity when the thickness of the outermost insulating layer is 50 µm and 100 µm, respectively. Meanwhile, the changes of the inlet effect intensity and the error rate of central axial velocity field are also analyzed when the input signal intensity is different. Through the numerical experiment, it verifies that the thickness of the outermost insulating layer and the amplitude of the input signal are two important factors which can affect the inlet effect intensity and also the accuracy of the MET. Therefore, this study can provide a theoretical basis for the quantitative study on the performance optimization of a MET liquid sensor.
format Online
Article
Text
id pubmed-7180877
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71808772020-05-01 Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model Zhou, Qiuzhan He, Qi Chen, Yuzhu Bao, Xue Sensors (Basel) Article The actual fluid form of an electrolyte in a molecular electronic converter is an important factor that causes a decrease in the accuracy of a molecular electronic transducer (MET) liquid motion sensor. To study the actual fluid morphology of an inertial electrolyte in molecular electron transducers, an inlet effect is defined according to the fluid morphology of turbulent-laminar flow, and a numerical simulation model of turbulent-laminar flow is proposed. Based on the turbulent-laminar flow model, this paper studies the variation of the inlet effect intensity when the thickness of the outermost insulating layer is 50 µm and 100 µm, respectively. Meanwhile, the changes of the inlet effect intensity and the error rate of central axial velocity field are also analyzed when the input signal intensity is different. Through the numerical experiment, it verifies that the thickness of the outermost insulating layer and the amplitude of the input signal are two important factors which can affect the inlet effect intensity and also the accuracy of the MET. Therefore, this study can provide a theoretical basis for the quantitative study on the performance optimization of a MET liquid sensor. MDPI 2020-04-10 /pmc/articles/PMC7180877/ /pubmed/32290329 http://dx.doi.org/10.3390/s20072154 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhou, Qiuzhan
He, Qi
Chen, Yuzhu
Bao, Xue
Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title_full Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title_fullStr Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title_full_unstemmed Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title_short Inlet Effect Caused by Multichannel Structure for Molecular Electronic Transducer Based on a Turbulent-Laminar Flow Model
title_sort inlet effect caused by multichannel structure for molecular electronic transducer based on a turbulent-laminar flow model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180877/
https://www.ncbi.nlm.nih.gov/pubmed/32290329
http://dx.doi.org/10.3390/s20072154
work_keys_str_mv AT zhouqiuzhan inleteffectcausedbymultichannelstructureformolecularelectronictransducerbasedonaturbulentlaminarflowmodel
AT heqi inleteffectcausedbymultichannelstructureformolecularelectronictransducerbasedonaturbulentlaminarflowmodel
AT chenyuzhu inleteffectcausedbymultichannelstructureformolecularelectronictransducerbasedonaturbulentlaminarflowmodel
AT baoxue inleteffectcausedbymultichannelstructureformolecularelectronictransducerbasedonaturbulentlaminarflowmodel