Cargando…
MAFC: Multi-Agent Fog Computing Model for Healthcare Critical Tasks Management
In healthcare applications, numerous sensors and devices produce massive amounts of data which are the focus of critical tasks. Their management at the edge of the network can be done by Fog computing implementation. However, Fog Nodes suffer from lake of resources That could limit the time needed f...
Autores principales: | Mutlag, Ammar Awad, Khanapi Abd Ghani, Mohd, Mohammed, Mazin Abed, Maashi, Mashael S., Mohd, Othman, Mostafa, Salama A., Abdulkareem, Karrar Hameed, Marques, Gonçalo, de la Torre Díez, Isabel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180887/ https://www.ncbi.nlm.nih.gov/pubmed/32230843 http://dx.doi.org/10.3390/s20071853 |
Ejemplares similares
-
Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring
por: Mutlag, Ammar Awad, et al.
Publicado: (2021) -
Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud infrastructure for transport data
por: Mohammed, Mazin Abed, et al.
Publicado: (2023) -
Smart Healthcare System for Severity Prediction and Critical Tasks Management of COVID-19 Patients in IoT-Fog Computing Environments
por: Hameed Abdulkareem, Karrar, et al.
Publicado: (2022) -
COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
por: Al-Waisy, Alaa S., et al.
Publicado: (2020) -
Automated waste-sorting and recycling classification using artificial neural network and features fusion: a digital-enabled circular economy vision for smart cities
por: Mohammed, Mazin Abed, et al.
Publicado: (2022)