Cargando…

Multi-Network Asynchronous TDOA Algorithm Test in a Simulated Maritime Scenario

In the last few years, the number of applications relying on position of vessels at sea has grown significantly. Usually, these applications exploit information provided by the Automatic Identification System (AIS). Unfortunately, the cooperative nature of AIS makes it vulnerable to different types...

Descripción completa

Detalles Bibliográficos
Autores principales: Gioia, Ciro, Sermi, Francesco, Tarchi, Dario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180892/
https://www.ncbi.nlm.nih.gov/pubmed/32224952
http://dx.doi.org/10.3390/s20071842
Descripción
Sumario:In the last few years, the number of applications relying on position of vessels at sea has grown significantly. Usually, these applications exploit information provided by the Automatic Identification System (AIS). Unfortunately, the cooperative nature of AIS makes it vulnerable to different types of attack. Therefore, especially for critical applications, the veracity of the position information reported in the AIS message needs to be verified. Several techniques can be adopted to this end. This paper presents a mathematical extension of the traditional Time Difference Of Arrival (TDOA) localisation technique allowing merging TDOA measurement from synchronous and non-synchronous receivers. This technique was tested in a simulated scenario, where the position of a moving target was estimated using different configurations of the receivers network. The robustness of the proposed algorithm with respect to the traditional one is demonstrated. The proposed approach, which is derived form satellite applications, is not limited to the AIS signals or to the maritime domain, and it can be adopted to estimate the position of any radiofrequency transmitter, by employing a suitable number of non-synchronous receivers.