Cargando…
Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
Efficient fault diagnosis of electrical and mechanical anomalies in induction motors (IMs) is challenging but necessary to ensure safety and economical operation in industries. Research has shown that bearing faults are the most frequently occurring faults in IMs. The vibration signals carry rich in...
Autores principales: | Toma, Rafia Nishat, Prosvirin, Alexander E., Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180902/ https://www.ncbi.nlm.nih.gov/pubmed/32231167 http://dx.doi.org/10.3390/s20071884 |
Ejemplares similares
-
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection
por: Maliuk, Andrei S., et al.
Publicado: (2021) -
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
por: Duong, Bach Phi, et al.
Publicado: (2018) -
A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions
por: Toma, Rafia Nishat, et al.
Publicado: (2022)