Cargando…

The Feasibility of Remotely Piloted Aircrafts for VOR Flight Inspection

This article analyzes the use of Remotely Piloted Aircrafts (RPA) in VOR (Very High Frequency Omnidirectional Range) flight inspection. Initially, tests were performed to check whether the Autopilot Positioning System (APS) met the regulatory requirements. The results of these tests indicated that t...

Descripción completa

Detalles Bibliográficos
Autores principales: de Oliveira Costa, Diogo, Oliveira, Neusa Maria Franco, d’Amore, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180946/
https://www.ncbi.nlm.nih.gov/pubmed/32244311
http://dx.doi.org/10.3390/s20071947
Descripción
Sumario:This article analyzes the use of Remotely Piloted Aircrafts (RPA) in VOR (Very High Frequency Omnidirectional Range) flight inspection. Initially, tests were performed to check whether the Autopilot Positioning System (APS) met the regulatory requirements. The results of these tests indicated that the APS provided information within the standard regulations. A Hardware in the Loop (HIL) platform was implemented to perform flight tests following the waypoints generated by a mission automation routine. One test was performed without introducing disturbance into the proposed test platform. The other four tests were performed introducing errors in latitude and longitude in the APS into the platform. The errors introduced had the same characteristics as those measured in the initial tests, in order for the simulation tests to be as similar as possible to the real situation. The tests performed with positioning errors only did not lead to false misalignment detection. However, introducing positioning errors and a 4° VOR misalignment error, a misalignment of 3.99° was observed during the flight test. This is a value greater than the maximum one allowed by the regulations, and the system indicates the VOR misalignment. Five flight inspection tests were performed. In addition to the APS errors, tests with a modulation error were also conducted. Introducing a 4° VOR misalignment in conjunction with modulation error, a misalignment of 4.02° was observed, resulting in successful misalignment detection.