Cargando…
Save Muscle Information–Unfiltered EEG Signal Helps Distinguish Sleep Stages
Based on the well-established biopotential theory, we hypothesize that the high frequency spectral information, like that higher than 100Hz, of the EEG signal recorded in the off-the-shelf EEG sensor contains muscle tone information. We show that an existing automatic sleep stage annotation algorith...
Autores principales: | Liu, Gi-Ren, Lustenberger, Caroline, Lo, Yu-Lun, Liu, Wen-Te, Sheu, Yuan-Chung, Wu, Hau-Tieng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180982/ https://www.ncbi.nlm.nih.gov/pubmed/32260314 http://dx.doi.org/10.3390/s20072024 |
Ejemplares similares
-
Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data
por: Zhang, Xiaoqing, et al.
Publicado: (2020) -
Prediction of the severity of obstructive sleep apnea by anthropometric features via support vector machine
por: Liu, Wen-Te, et al.
Publicado: (2017) -
Deeply Learned Classifiers for Age and Gender Predictions of Unfiltered Faces
por: Agbo-Ajala, Olatunbosun, et al.
Publicado: (2020) -
A Persistent Homology Approach to Heart Rate Variability Analysis With an Application to Sleep-Wake Classification
por: Chung, Yu-Min, et al.
Publicado: (2021) -
Application of High-Pressure Processing to Assure the Storage Stability of Unfiltered Lager Beer
por: Štulíková, Kateřina, et al.
Publicado: (2020)