Cargando…
Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions
The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181000/ https://www.ncbi.nlm.nih.gov/pubmed/32276442 http://dx.doi.org/10.3390/s20072099 |
_version_ | 1783525951390351360 |
---|---|
author | Hoffmann, Martin W. Wildermuth, Stephan Gitzel, Ralf Boyaci, Aydin Gebhardt, Jörg Kaul, Holger Amihai, Ido Forg, Bodo Suriyah, Michael Leibfried, Thomas Stich, Volker Hicking, Jan Bremer, Martin Kaminski, Lars Beverungen, Daniel zur Heiden, Philipp Tornede, Tanja |
author_facet | Hoffmann, Martin W. Wildermuth, Stephan Gitzel, Ralf Boyaci, Aydin Gebhardt, Jörg Kaul, Holger Amihai, Ido Forg, Bodo Suriyah, Michael Leibfried, Thomas Stich, Volker Hicking, Jan Bremer, Martin Kaminski, Lars Beverungen, Daniel zur Heiden, Philipp Tornede, Tanja |
author_sort | Hoffmann, Martin W. |
collection | PubMed |
description | The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale. |
format | Online Article Text |
id | pubmed-7181000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71810002020-04-30 Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions Hoffmann, Martin W. Wildermuth, Stephan Gitzel, Ralf Boyaci, Aydin Gebhardt, Jörg Kaul, Holger Amihai, Ido Forg, Bodo Suriyah, Michael Leibfried, Thomas Stich, Volker Hicking, Jan Bremer, Martin Kaminski, Lars Beverungen, Daniel zur Heiden, Philipp Tornede, Tanja Sensors (Basel) Review The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale. MDPI 2020-04-08 /pmc/articles/PMC7181000/ /pubmed/32276442 http://dx.doi.org/10.3390/s20072099 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hoffmann, Martin W. Wildermuth, Stephan Gitzel, Ralf Boyaci, Aydin Gebhardt, Jörg Kaul, Holger Amihai, Ido Forg, Bodo Suriyah, Michael Leibfried, Thomas Stich, Volker Hicking, Jan Bremer, Martin Kaminski, Lars Beverungen, Daniel zur Heiden, Philipp Tornede, Tanja Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title | Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title_full | Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title_fullStr | Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title_full_unstemmed | Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title_short | Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions |
title_sort | integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181000/ https://www.ncbi.nlm.nih.gov/pubmed/32276442 http://dx.doi.org/10.3390/s20072099 |
work_keys_str_mv | AT hoffmannmartinw integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT wildermuthstephan integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT gitzelralf integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT boyaciaydin integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT gebhardtjorg integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT kaulholger integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT amihaiido integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT forgbodo integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT suriyahmichael integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT leibfriedthomas integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT stichvolker integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT hickingjan integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT bremermartin integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT kaminskilars integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT beverungendaniel integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT zurheidenphilipp integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions AT tornedetanja integrationofnovelsensorsandmachinelearningforpredictivemaintenanceinmediumvoltageswitchgeartoenabletheenergyandmobilityrevolutions |