Cargando…
Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
The electroencephalogram (EEG) has great attraction in emotion recognition studies due to its resistance to deceptive actions of humans. This is one of the most significant advantages of brain signals in comparison to visual or speech signals in the emotion recognition context. A major challenge in...
Autores principales: | Cimtay, Yucel, Ekmekcioglu, Erhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181114/ https://www.ncbi.nlm.nih.gov/pubmed/32260445 http://dx.doi.org/10.3390/s20072034 |
Ejemplares similares
-
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
por: Fdez, Javier, et al.
Publicado: (2021) -
Research on Emotion Recognition of EEG Signal Based on Convolutional Neural Networks and High-Order Cross-Analysis
por: Fan, Chengcheng, et al.
Publicado: (2022) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Retracted: Research on Emotion Recognition of EEG Signal Based on Convolutional Neural Networks and High-Order Cross-Analysis
por: Engineering, Journal of Healthcare
Publicado: (2023)