Cargando…
A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning †
Total Suspended Solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, this paper presents a methodology to estimate this information through remote sensing and Machine Learning (M...
Autores principales: | Silveira Kupssinskü, Lucas, Thomassim Guimarães, Tainá, Menezes de Souza, Eniuce, C. Zanotta, Daniel, Roberto Veronez, Mauricio, Gonzaga, Luiz, Mauad, Frederico Fábio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181123/ https://www.ncbi.nlm.nih.gov/pubmed/32283787 http://dx.doi.org/10.3390/s20072125 |
Ejemplares similares
-
Proposal of a Method to Determine the Correlation between Total Suspended Solids and Dissolved Organic Matter in Water Bodies from Spectral Imaging and Artificial Neural Networks
por: R. Veronez, Maurício, et al.
Publicado: (2018) -
Improving Spatial Resolution of Multispectral Rock Outcrop Images Using RGB Data and Artificial Neural Networks
por: Marques Junior, Ademir, et al.
Publicado: (2020) -
Respiratory Diseases, Malaria and Leishmaniasis: Temporal and Spatial Association with Fire Occurrences from Knowledge Discovery and Data Mining
por: Schroeder, Lucas, et al.
Publicado: (2020) -
Fire association with respiratory disease and COVID-19 complications in the State of Pará, Brazil
por: Schroeder, Lucas, et al.
Publicado: (2021) -
Global remote sensing of water–chlorophyll ratio in terrestrial plant leaves
por: Kushida, Keiji
Publicado: (2012)