Cargando…

Detection of Driving Capability Degradation for Human-Machine Cooperative Driving

Due to the limitation of current technologies and product costs, humans are still in the driving loop, especially for public traffic. One key problem of cooperative driving is determining the time when assistance is required by a driver. To overcome the disadvantage of the driver state-based detecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Feng, He, Bo, He, Yingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181156/
https://www.ncbi.nlm.nih.gov/pubmed/32244626
http://dx.doi.org/10.3390/s20071968
Descripción
Sumario:Due to the limitation of current technologies and product costs, humans are still in the driving loop, especially for public traffic. One key problem of cooperative driving is determining the time when assistance is required by a driver. To overcome the disadvantage of the driver state-based detection algorithm, a new index called the correction ability of the driver is proposed, which is further combined with the driving risk to evaluate the driving capability. Based on this measurement, a degraded domain (DD) is further set up to detect the degradation of the driving capability. The log normal distribution is used to model the boundary of DD according to the bench test data, and an online algorithm is designed to update its parameter interactively to identify individual driving styles. The bench validation results show that the identification algorithm of the DD boundary converges finely and can reflect the individual driving characteristics. The proposed degradation detection algorithm can be used to determine the switching time from manual to automatic driving, and this DD-based cooperative driving system can drive the vehicle in a safe condition.