Cargando…
Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework
Cellular broadband Internet of Things (IoT) applications are expected to keep growing year-by-year, generating demands from high throughput services. Since some of these applications are deployed over licensed mobile networks, as long term evolution (LTE), one already common problem is faced: the sc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181158/ https://www.ncbi.nlm.nih.gov/pubmed/32230829 http://dx.doi.org/10.3390/s20071855 |
_version_ | 1783525984837828608 |
---|---|
author | de C. Neto, José M. Neto, Sildolfo F. G. M. de Santana, Pedro de Sousa, Vicente A. |
author_facet | de C. Neto, José M. Neto, Sildolfo F. G. M. de Santana, Pedro de Sousa, Vicente A. |
author_sort | de C. Neto, José M. |
collection | PubMed |
description | Cellular broadband Internet of Things (IoT) applications are expected to keep growing year-by-year, generating demands from high throughput services. Since some of these applications are deployed over licensed mobile networks, as long term evolution (LTE), one already common problem is faced: the scarcity of licensed spectrum to cope with the increasing demand for data rate. The LTE-Unlicensed (LTE-U) forum, aiming to tackle this problem, proposed LTE-U to operate in the 5 GHz unlicensed spectrum. However, Wi-Fi is already the consolidated technology operating in this portion of the spectrum, besides the fact that new technologies for unlicensed band need mechanisms to promote fair coexistence with the legacy ones. In this work, we extend the literature by analyzing a multi-cell LTE-U/Wi-Fi coexistence scenario, with a high interference profile and data rates targeting a cellular broadband IoT deployment. Then, we propose a centralized, coordinated reinforcement learning framework to improve LTE-U/Wi-Fi aggregate data rates. The added value of the proposed solution is assessed by a ns-3 simulator, showing improvements not only in the overall system data rate but also in average user data rate, even with the high interference of a multi-cell environment. |
format | Online Article Text |
id | pubmed-7181158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71811582020-04-28 Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework de C. Neto, José M. Neto, Sildolfo F. G. M. de Santana, Pedro de Sousa, Vicente A. Sensors (Basel) Article Cellular broadband Internet of Things (IoT) applications are expected to keep growing year-by-year, generating demands from high throughput services. Since some of these applications are deployed over licensed mobile networks, as long term evolution (LTE), one already common problem is faced: the scarcity of licensed spectrum to cope with the increasing demand for data rate. The LTE-Unlicensed (LTE-U) forum, aiming to tackle this problem, proposed LTE-U to operate in the 5 GHz unlicensed spectrum. However, Wi-Fi is already the consolidated technology operating in this portion of the spectrum, besides the fact that new technologies for unlicensed band need mechanisms to promote fair coexistence with the legacy ones. In this work, we extend the literature by analyzing a multi-cell LTE-U/Wi-Fi coexistence scenario, with a high interference profile and data rates targeting a cellular broadband IoT deployment. Then, we propose a centralized, coordinated reinforcement learning framework to improve LTE-U/Wi-Fi aggregate data rates. The added value of the proposed solution is assessed by a ns-3 simulator, showing improvements not only in the overall system data rate but also in average user data rate, even with the high interference of a multi-cell environment. MDPI 2020-03-27 /pmc/articles/PMC7181158/ /pubmed/32230829 http://dx.doi.org/10.3390/s20071855 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article de C. Neto, José M. Neto, Sildolfo F. G. M. de Santana, Pedro de Sousa, Vicente A. Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title | Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title_full | Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title_fullStr | Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title_full_unstemmed | Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title_short | Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework |
title_sort | multi-cell lte-u/wi-fi coexistence evaluation using a reinforcement learning framework |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181158/ https://www.ncbi.nlm.nih.gov/pubmed/32230829 http://dx.doi.org/10.3390/s20071855 |
work_keys_str_mv | AT decnetojosem multicelllteuwificoexistenceevaluationusingareinforcementlearningframework AT netosildolfofg multicelllteuwificoexistenceevaluationusingareinforcementlearningframework AT mdesantanapedro multicelllteuwificoexistenceevaluationusingareinforcementlearningframework AT desousavicentea multicelllteuwificoexistenceevaluationusingareinforcementlearningframework |