Cargando…

Fiber Bragg Grating Dynamic Calibration Based on Online Sequential Extreme Learning Machine

The fiber Bragg grating (FBG) sensor calibration process is critical for optimizing performance. Real-time dynamic calibration is essential to improve the measured accuracy of the sensor. In this paper, we present a dynamic calibration method for FBG sensor temperature measurement, utilizing the onl...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Qiufeng, Qin, Wenjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181166/
https://www.ncbi.nlm.nih.gov/pubmed/32224936
http://dx.doi.org/10.3390/s20071840
Descripción
Sumario:The fiber Bragg grating (FBG) sensor calibration process is critical for optimizing performance. Real-time dynamic calibration is essential to improve the measured accuracy of the sensor. In this paper, we present a dynamic calibration method for FBG sensor temperature measurement, utilizing the online sequential extreme learning machine (OS-ELM). During the measurement process, the calibration model is continuously updated instead of retrained, which can reduce tedious calculations and improve the predictive speed. Polynomial fitting, a back propagation (BP) network, and a radial basis function (RBF) network were compared, and the results showed the dynamic method not only had a better generalization performance but also had a faster learning process. The dynamic calibration enabled the real-time measured data of the FBG sensor to input calibration models as online learning samples continuously, and could solve the insufficient coverage problem of static calibration training samples, so as to improve the long-term stability, accuracy of prediction, and generalization ability of the FBG sensor.