Cargando…
Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever
An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181168/ https://www.ncbi.nlm.nih.gov/pubmed/32260130 http://dx.doi.org/10.3390/s20072013 |
_version_ | 1783525987355459584 |
---|---|
author | Nuryadi, Ratno Aprilia, Lia Hosoda, Makoto Barique, Mohamad Abdul Udhiarto, Arief Hartanto, Djoko Setiawan, Muhammad Budi Neo, Yoichiro Mimura, Hidenori |
author_facet | Nuryadi, Ratno Aprilia, Lia Hosoda, Makoto Barique, Mohamad Abdul Udhiarto, Arief Hartanto, Djoko Setiawan, Muhammad Budi Neo, Yoichiro Mimura, Hidenori |
author_sort | Nuryadi, Ratno |
collection | PubMed |
description | An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed by measuring a resonant frequency shift of vibrated MC. CO gas response showed a significant increase in resonant frequency, where sensitivity in the order of picogram amounts was obtained. An increase in resonant frequency was also observed with increasing gas flow rate, which was simultaneously followed by a decrease in relative humidity, indicating that the molecular interface between ZnO and H(2)O plays a key role in CO absorption. The detection of other gases of carbon compounds such as CO(2) and CH(4) was also performed; the sensitivity of CO was found to be higher than those gases. The results demonstrate the reversibility and reproducibility of the proposed technique, opening up future developments of highly sensitive CO-gas detectors with a fast response and room temperature operation. |
format | Online Article Text |
id | pubmed-7181168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71811682020-04-28 Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever Nuryadi, Ratno Aprilia, Lia Hosoda, Makoto Barique, Mohamad Abdul Udhiarto, Arief Hartanto, Djoko Setiawan, Muhammad Budi Neo, Yoichiro Mimura, Hidenori Sensors (Basel) Article An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed by measuring a resonant frequency shift of vibrated MC. CO gas response showed a significant increase in resonant frequency, where sensitivity in the order of picogram amounts was obtained. An increase in resonant frequency was also observed with increasing gas flow rate, which was simultaneously followed by a decrease in relative humidity, indicating that the molecular interface between ZnO and H(2)O plays a key role in CO absorption. The detection of other gases of carbon compounds such as CO(2) and CH(4) was also performed; the sensitivity of CO was found to be higher than those gases. The results demonstrate the reversibility and reproducibility of the proposed technique, opening up future developments of highly sensitive CO-gas detectors with a fast response and room temperature operation. MDPI 2020-04-03 /pmc/articles/PMC7181168/ /pubmed/32260130 http://dx.doi.org/10.3390/s20072013 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nuryadi, Ratno Aprilia, Lia Hosoda, Makoto Barique, Mohamad Abdul Udhiarto, Arief Hartanto, Djoko Setiawan, Muhammad Budi Neo, Yoichiro Mimura, Hidenori Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title | Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title_full | Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title_fullStr | Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title_full_unstemmed | Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title_short | Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever |
title_sort | observation of co detection using aluminum-doped zno nanorods on microcantilever |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181168/ https://www.ncbi.nlm.nih.gov/pubmed/32260130 http://dx.doi.org/10.3390/s20072013 |
work_keys_str_mv | AT nuryadiratno observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT aprilialia observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT hosodamakoto observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT bariquemohamadabdul observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT udhiartoarief observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT hartantodjoko observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT setiawanmuhammadbudi observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT neoyoichiro observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever AT mimurahidenori observationofcodetectionusingaluminumdopedznonanorodsonmicrocantilever |