Cargando…
ECCM Schemes against Deception Jamming Using OFDM Radar with Low Global PAPR
In this paper, a type of effective electronic counter-countermeasures (ECCM) technique for suppressing the high-power deception jamming using an orthogonal frequency division multiplexing (OFDM) radar is proposed. Concerning the velocity deception jamming, the initial phases of the pulses transmitte...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181218/ https://www.ncbi.nlm.nih.gov/pubmed/32272687 http://dx.doi.org/10.3390/s20072071 |
Sumario: | In this paper, a type of effective electronic counter-countermeasures (ECCM) technique for suppressing the high-power deception jamming using an orthogonal frequency division multiplexing (OFDM) radar is proposed. Concerning the velocity deception jamming, the initial phases of the pulses transmitted in a coherent processing interval (CPI) are designed to minimize the jamming power within a specific range, forming a notch around the jamming in the Doppler spectrum. For the purpose of suppressing the range deception jamming and the joint range-velocity deception jamming, the phase codes of the subcarriers belonging to the OFDM pulses are optimized to minimize the jamming power, distributing some specific bands in the range and the range-velocity domain, respectively. According to Parseval’s theorem, the phase encoding, acting as the coding manner of the OFDM subcarriers can ensure that the energy of each OFDM symbol stays the same. It is worth noticing that the phase codes of the OFDM subcarriers can influence the peak-to-average power ratio (PAPR). Thus, an optimization problem is formulated to optimize the phase codes of the subcarriers under the constraint of global PAPR, which can regulate the PAPRs of multiple OFDM symbols at the same time. The proposed problem is non-convex; therefore, it is a huge challenge to tackle. Then we present a method named by the phase-only alternating direction method multipliers (POADMM) to solve the aforementioned optimization problem. Some necessary simulation results are provided to demonstrate the effectiveness of the proposed radar signaling strategy |
---|