Cargando…
Path Loss Prediction Based on Machine Learning Techniques: Principal Component Analysis, Artificial Neural Network, and Gaussian Process
Although various linear log-distance path loss models have been developed for wireless sensor networks, advanced models are required to more accurately and flexibly represent the path loss for complex environments. This paper proposes a machine learning framework for modeling path loss using a combi...
Autores principales: | Jo, Han-Shin, Park, Chanshin, Lee, Eunhyoung, Choi, Haing Kun, Park, Jaedon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181246/ https://www.ncbi.nlm.nih.gov/pubmed/32235640 http://dx.doi.org/10.3390/s20071927 |
Ejemplares similares
-
Deep Q-Learning-Based Transmission Power Control of a High Altitude Platform Station with Spectrum Sharing
por: Jo, Seongjun, et al.
Publicado: (2022) -
Principal component neural networks : theory and applications
por: Diamantaras, Konstantinos I.
Publicado: (1996) -
The principal machine components of the LEP accelerator.
por: Jean-Luc Caron
Publicado: (1992) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Artificial Neural Networks Combined with the Principal Component Analysis for Non-Fluent Speech Recognition
por: Świetlicka, Izabela, et al.
Publicado: (2022)