Cargando…

Decorating the Anammox House: Sialic Acids and Sulfated Glycosaminoglycans in the Extracellular Polymeric Substances of Anammox Granular Sludge

[Image: see text] Anammox (anaerobic ammonium oxidation) bacteria are important for the nitrogen cycle in both natural environments and wastewater treatment plants. These bacteria have a strong tendency to grow in aggregates like biofilms and granular sludge. To understand the formation of anammox a...

Descripción completa

Detalles Bibliográficos
Autores principales: Boleij, Marissa, Kleikamp, Hugo, Pabst, Martin, Neu, Thomas R., van Loosdrecht, Mark C. M., Lin, Yuemei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181257/
https://www.ncbi.nlm.nih.gov/pubmed/32227885
http://dx.doi.org/10.1021/acs.est.9b07207
Descripción
Sumario:[Image: see text] Anammox (anaerobic ammonium oxidation) bacteria are important for the nitrogen cycle in both natural environments and wastewater treatment plants. These bacteria have a strong tendency to grow in aggregates like biofilms and granular sludge. To understand the formation of anammox aggregates, it is required to unravel the composition of the extracellular polymeric substances (EPS), which are produced by the bacteria to develop into aggregates and granules. Here, we investigated anionic polymers in anammox granular sludge, focussing on sialic acids and sulfated glycosaminoglycans. Quantification assays and fluorescent stains indicated that sialic acids and sulfated glycosaminoglycans were present in the anammox EPS (1.6% equivalents of sialic acids and 2.4% equivalents of sulfated glycosaminoglycans). Additionally, the potential genes for the biosynthesis of sialic acids and sulfated glycosaminoglycans were analyzed in the anammox draft genomes. The finding of these components in anammox granular sludge and previously in other nonpathogenic bacteria pointed out that sialic acids and sulfated glycosaminoglycans are worth investigating in the context of a broader function in microbial communities and biofilm systems in general.