Cargando…
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
Classifying remote sensing images is vital for interpreting image content. Presently, remote sensing image scene classification methods using convolutional neural networks have drawbacks, including excessive parameters and heavy calculation costs. More efficient and lightweight CNNs have fewer param...
Autores principales: | Yu, Donghang, Xu, Qing, Guo, Haitao, Zhao, Chuan, Lin, Yuzhun, Li, Daoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181261/ https://www.ncbi.nlm.nih.gov/pubmed/32252483 http://dx.doi.org/10.3390/s20071999 |
Ejemplares similares
-
Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification
por: Zhang, Jianming, et al.
Publicado: (2020) -
Adaptive Discriminative Regions Learning Network for Remote Sensing Scene Classification
por: Tang, Chuan, et al.
Publicado: (2023) -
Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
por: Giannopoulos, Michalis, et al.
Publicado: (2020) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification
por: Bai, Yang, et al.
Publicado: (2023)