Cargando…
Margin-Based Deep Learning Networks for Human Activity Recognition
Human activity recognition (HAR) is a popular and challenging research topic, driven by a variety of applications. More recently, with significant progress in the development of deep learning networks for classification tasks, many researchers have made use of such models to recognise human activiti...
Autores principales: | Lv, Tianqi, Wang, Xiaojuan, Jin, Lei, Xiao, Yabo, Song, Mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181274/ https://www.ncbi.nlm.nih.gov/pubmed/32230986 http://dx.doi.org/10.3390/s20071871 |
Ejemplares similares
-
HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms
por: Wang, Xiaojuan, et al.
Publicado: (2021) -
Radar Human Activity Recognition with an Attention-Based Deep Learning Network
por: Huan, Sha, et al.
Publicado: (2023) -
The use of deep learning for smartphone-based human activity recognition
por: Stampfler, Tristan, et al.
Publicado: (2023) -
Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning
por: Nafea, Ohoud, et al.
Publicado: (2021) -
A CSI-Based Human Activity Recognition Using Deep Learning
por: Moshiri, Parisa Fard, et al.
Publicado: (2021)