Cargando…
A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory
Smartphones have emerged as a revolutionary technology for monitoring everyday life, and they have played an important role in Human Activity Recognition (HAR) due to its ubiquity. The sensors embedded in these devices allows recognizing human behaviors using machine learning techniques. However, no...
Autores principales: | Bragança, Hendrio, Colonna, Juan G., Lima, Wesllen Sousa, Souto, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181294/ https://www.ncbi.nlm.nih.gov/pubmed/32230830 http://dx.doi.org/10.3390/s20071856 |
Ejemplares similares
-
Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors
por: Sousa Lima, Wesllen, et al.
Publicado: (2018) -
Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
por: Sousa Lima, Wesllen, et al.
Publicado: (2019) -
How Validation Methodology Influences Human Activity Recognition Mobile Systems
por: Bragança, Hendrio, et al.
Publicado: (2022) -
MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors
por: Montero Quispe, Kevin G., et al.
Publicado: (2018) -
An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
por: Ankita,, et al.
Publicado: (2021)