Cargando…

Refinement of dietary exposure assessment using origin-related scenarios

Global sourcing of food may lead to variability in concentrations of contaminants or pesticide residues. It would be important to incorporate origin influences in dietary exposure assessment. To characterise uncertainties, substance concentrations from GFM (German Food Monitoring), chosen based on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fechner, Carolin, Greiner, Matthias, Heseker, Helmut, Lindtner, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181391/
https://www.ncbi.nlm.nih.gov/pubmed/30728483
http://dx.doi.org/10.1038/s41370-019-0117-6
Descripción
Sumario:Global sourcing of food may lead to variability in concentrations of contaminants or pesticide residues. It would be important to incorporate origin influences in dietary exposure assessment. To characterise uncertainties, substance concentrations from GFM (German Food Monitoring), chosen based on the highest CV (coefficient of variation), and food consumption from NVS II (German National Nutrition Survey II) were combined in standard scenarios. Averages or higher percentiles of non-grouped concentrations were used. Additional origin-related scenarios used concentrations grouped by origin. For bromide in tomatoes the most conservative origin-related scenario for Italian tomatoes resulted in the highest exposure of 0.015 mg/d/kg BW. The impact of origin was not covered by the conservative standard scenario (0.006 mg/d/kg BW). For ethephon in pineapples and aluminium in kiwifruits, the highest intake estimates were obtained with the conservative standard scenario resulting in 0.895 μg/d/kg BW and 0.023 mg/week/kg BW, respectively. In these two cases, standard scenarios cover origin influences but the conservative origin-related scenario based on origins with higher concentrations identifies lower exposures of 0.835 μg/d/kg BW for ethephon from African pineapples and 0.014 mg/week/kg BW for aluminium from non-EU kiwifruits. Hence, the inclusion of origin information can refine exposure assessment.