Cargando…
Motor timing training improves sustained attention performance but not fluid intelligence: near but not far transfer
Associations between cognitive and motor timing performance are documented in hundreds of studies. A core finding is a correlation of about − 0.3 to − 0.5 between psychometric intelligence and time interval production variability and reaction time, but the nature of the relationship remains unclear....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181559/ https://www.ncbi.nlm.nih.gov/pubmed/32206850 http://dx.doi.org/10.1007/s00221-020-05780-4 |
Sumario: | Associations between cognitive and motor timing performance are documented in hundreds of studies. A core finding is a correlation of about − 0.3 to − 0.5 between psychometric intelligence and time interval production variability and reaction time, but the nature of the relationship remains unclear. Here, we investigated whether this relation is subject to near and far transfer across a battery of cognitive and timing tasks. These tasks were administered pre- and post-five daily 30 min sessions of sensorimotor synchronization training with feedback for every interval. The training group exhibited increased sustained attention performance in Conners’ Continuous Performance Test II, but no change in the block design and figure weights subtests from the WAIS-IV. A passive control group exhibited no change in performance on any of the timing or cognitive tests. These findings provide evidence for a direct involvement of sustained attention in motor timing as well as near transfer from synchronization to unpaced serial interval production. Implications for the timing–cognition relationship are discussed in light of various putative timing mechanisms. |
---|