Cargando…
Feature-specific neural reactivation during episodic memory
We present a multi-voxel analytical approach, feature-specific informational connectivity (FSIC), that leverages hierarchical representations from a neural network to decode neural reactivation in fMRI data collected while participants performed an episodic visual recall task. We show that neural re...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181630/ https://www.ncbi.nlm.nih.gov/pubmed/32327642 http://dx.doi.org/10.1038/s41467-020-15763-2 |
Sumario: | We present a multi-voxel analytical approach, feature-specific informational connectivity (FSIC), that leverages hierarchical representations from a neural network to decode neural reactivation in fMRI data collected while participants performed an episodic visual recall task. We show that neural reactivation associated with low-level (e.g. edges), high-level (e.g. facial features), and semantic (e.g. “terrier”) features occur throughout the dorsal and ventral visual streams and extend into the frontal cortex. Moreover, we show that reactivation of both low- and high-level features correlate with the vividness of the memory, whereas only reactivation of low-level features correlates with recognition accuracy when the lure and target images are semantically similar. In addition to demonstrating the utility of FSIC for mapping feature-specific reactivation, these findings resolve the contributions of low- and high-level features to the vividness of visual memories and challenge a strict interpretation the posterior-to-anterior visual hierarchy. |
---|