Cargando…

Record thermopower found in an IrMn-based spintronic stack

The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferrom...

Descripción completa

Detalles Bibliográficos
Autores principales: Tu, Sa, Ziman, Timothy, Yu, Guoqiang, Wan, Caihua, Hu, Junfeng, Wu, Hao, Wang, Hanchen, Liu, Mengchao, Liu, Chuanpu, Guo, Chenyang, Zhang, Jianyu, Cabero Z., Marco A., Zhang, Youguang, Gao, Peng, Liu, Song, Yu, Dapeng, Han, Xiufeng, Hallsteinsen, Ingrid, Gilbert, Dustin A., Wölfle, Peter, Wang, Kang L., Ansermet, Jean-Philippe, Maekawa, Sadamichi, Yu, Haiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181642/
https://www.ncbi.nlm.nih.gov/pubmed/32332726
http://dx.doi.org/10.1038/s41467-020-15797-6
_version_ 1783526084360273920
author Tu, Sa
Ziman, Timothy
Yu, Guoqiang
Wan, Caihua
Hu, Junfeng
Wu, Hao
Wang, Hanchen
Liu, Mengchao
Liu, Chuanpu
Guo, Chenyang
Zhang, Jianyu
Cabero Z., Marco A.
Zhang, Youguang
Gao, Peng
Liu, Song
Yu, Dapeng
Han, Xiufeng
Hallsteinsen, Ingrid
Gilbert, Dustin A.
Wölfle, Peter
Wang, Kang L.
Ansermet, Jean-Philippe
Maekawa, Sadamichi
Yu, Haiming
author_facet Tu, Sa
Ziman, Timothy
Yu, Guoqiang
Wan, Caihua
Hu, Junfeng
Wu, Hao
Wang, Hanchen
Liu, Mengchao
Liu, Chuanpu
Guo, Chenyang
Zhang, Jianyu
Cabero Z., Marco A.
Zhang, Youguang
Gao, Peng
Liu, Song
Yu, Dapeng
Han, Xiufeng
Hallsteinsen, Ingrid
Gilbert, Dustin A.
Wölfle, Peter
Wang, Kang L.
Ansermet, Jean-Philippe
Maekawa, Sadamichi
Yu, Haiming
author_sort Tu, Sa
collection PubMed
description The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferromagnetic metal IrMn has been used as the pinning layer in magnetic tunnel junctions that form building blocks for magnetic random access memories and magnetic sensors. Spin pumping experiments revealed that IrMn Néel temperature is thickness-dependent and approaches room temperature when the layer is thin. Here, we report that the Seebeck coefficient is maximum at the Néel temperature of IrMn of 0.6 to 4.0 nm in thickness in IrMn-based half magnetic tunnel junctions. We obtain a record Seebeck coefficient 390 (±10) μV K(−1) at room temperature. Our results demonstrate that IrMn-based magnetic devices could harvest the heat dissipation for magnetic sensors, thus contributing to the Power-of-Things paradigm.
format Online
Article
Text
id pubmed-7181642
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71816422020-04-29 Record thermopower found in an IrMn-based spintronic stack Tu, Sa Ziman, Timothy Yu, Guoqiang Wan, Caihua Hu, Junfeng Wu, Hao Wang, Hanchen Liu, Mengchao Liu, Chuanpu Guo, Chenyang Zhang, Jianyu Cabero Z., Marco A. Zhang, Youguang Gao, Peng Liu, Song Yu, Dapeng Han, Xiufeng Hallsteinsen, Ingrid Gilbert, Dustin A. Wölfle, Peter Wang, Kang L. Ansermet, Jean-Philippe Maekawa, Sadamichi Yu, Haiming Nat Commun Article The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferromagnetic metal IrMn has been used as the pinning layer in magnetic tunnel junctions that form building blocks for magnetic random access memories and magnetic sensors. Spin pumping experiments revealed that IrMn Néel temperature is thickness-dependent and approaches room temperature when the layer is thin. Here, we report that the Seebeck coefficient is maximum at the Néel temperature of IrMn of 0.6 to 4.0 nm in thickness in IrMn-based half magnetic tunnel junctions. We obtain a record Seebeck coefficient 390 (±10) μV K(−1) at room temperature. Our results demonstrate that IrMn-based magnetic devices could harvest the heat dissipation for magnetic sensors, thus contributing to the Power-of-Things paradigm. Nature Publishing Group UK 2020-04-24 /pmc/articles/PMC7181642/ /pubmed/32332726 http://dx.doi.org/10.1038/s41467-020-15797-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tu, Sa
Ziman, Timothy
Yu, Guoqiang
Wan, Caihua
Hu, Junfeng
Wu, Hao
Wang, Hanchen
Liu, Mengchao
Liu, Chuanpu
Guo, Chenyang
Zhang, Jianyu
Cabero Z., Marco A.
Zhang, Youguang
Gao, Peng
Liu, Song
Yu, Dapeng
Han, Xiufeng
Hallsteinsen, Ingrid
Gilbert, Dustin A.
Wölfle, Peter
Wang, Kang L.
Ansermet, Jean-Philippe
Maekawa, Sadamichi
Yu, Haiming
Record thermopower found in an IrMn-based spintronic stack
title Record thermopower found in an IrMn-based spintronic stack
title_full Record thermopower found in an IrMn-based spintronic stack
title_fullStr Record thermopower found in an IrMn-based spintronic stack
title_full_unstemmed Record thermopower found in an IrMn-based spintronic stack
title_short Record thermopower found in an IrMn-based spintronic stack
title_sort record thermopower found in an irmn-based spintronic stack
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181642/
https://www.ncbi.nlm.nih.gov/pubmed/32332726
http://dx.doi.org/10.1038/s41467-020-15797-6
work_keys_str_mv AT tusa recordthermopowerfoundinanirmnbasedspintronicstack
AT zimantimothy recordthermopowerfoundinanirmnbasedspintronicstack
AT yuguoqiang recordthermopowerfoundinanirmnbasedspintronicstack
AT wancaihua recordthermopowerfoundinanirmnbasedspintronicstack
AT hujunfeng recordthermopowerfoundinanirmnbasedspintronicstack
AT wuhao recordthermopowerfoundinanirmnbasedspintronicstack
AT wanghanchen recordthermopowerfoundinanirmnbasedspintronicstack
AT liumengchao recordthermopowerfoundinanirmnbasedspintronicstack
AT liuchuanpu recordthermopowerfoundinanirmnbasedspintronicstack
AT guochenyang recordthermopowerfoundinanirmnbasedspintronicstack
AT zhangjianyu recordthermopowerfoundinanirmnbasedspintronicstack
AT caberozmarcoa recordthermopowerfoundinanirmnbasedspintronicstack
AT zhangyouguang recordthermopowerfoundinanirmnbasedspintronicstack
AT gaopeng recordthermopowerfoundinanirmnbasedspintronicstack
AT liusong recordthermopowerfoundinanirmnbasedspintronicstack
AT yudapeng recordthermopowerfoundinanirmnbasedspintronicstack
AT hanxiufeng recordthermopowerfoundinanirmnbasedspintronicstack
AT hallsteinseningrid recordthermopowerfoundinanirmnbasedspintronicstack
AT gilbertdustina recordthermopowerfoundinanirmnbasedspintronicstack
AT wolflepeter recordthermopowerfoundinanirmnbasedspintronicstack
AT wangkangl recordthermopowerfoundinanirmnbasedspintronicstack
AT ansermetjeanphilippe recordthermopowerfoundinanirmnbasedspintronicstack
AT maekawasadamichi recordthermopowerfoundinanirmnbasedspintronicstack
AT yuhaiming recordthermopowerfoundinanirmnbasedspintronicstack