Cargando…
Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
Attempting to imitate the brain’s functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning (ML). Here, using neuronal cultures, we demonstrate that increased trai...
Autores principales: | Sardi, Shira, Vardi, Roni, Meir, Yuval, Tugendhaft, Yael, Hodassman, Shiri, Goldental, Amir, Kanter, Ido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181840/ https://www.ncbi.nlm.nih.gov/pubmed/32327697 http://dx.doi.org/10.1038/s41598-020-63755-5 |
Ejemplares similares
-
Publisher Correction: Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Efficient dendritic learning as an alternative to synaptic plasticity hypothesis
por: Hodassman, Shiri, et al.
Publicado: (2022) -
Brain inspired neuronal silencing mechanism to enable reliable sequence identification
por: Hodassman, Shiri, et al.
Publicado: (2022) -
Biological learning curves outperform existing ones in artificial intelligence algorithms
por: Uzan, Herut, et al.
Publicado: (2019) -
Power-law scaling to assist with key challenges in artificial intelligence
por: Meir, Yuval, et al.
Publicado: (2020)