Cargando…

The Difficulty of Effectively Using Allocentric Prior Information in a Spatial Recall Task

Prior information represents the long-term statistical structure of an environment. For example, colds develop more often than throat cancer, making the former a more likely diagnosis for a sore throat. There is ample evidence for effective use of prior information during a variety of perceptual tas...

Descripción completa

Detalles Bibliográficos
Autores principales: Negen, James, Bird, Laura-Ashleigh, King, Eleanor, Nardini, Marko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181880/
https://www.ncbi.nlm.nih.gov/pubmed/32332793
http://dx.doi.org/10.1038/s41598-020-62775-5
Descripción
Sumario:Prior information represents the long-term statistical structure of an environment. For example, colds develop more often than throat cancer, making the former a more likely diagnosis for a sore throat. There is ample evidence for effective use of prior information during a variety of perceptual tasks, including the ability to recall locations using an egocentric (self-based) frame. However, it is not yet known if people can use prior information effectively when using an allocentric (world-based) frame. Forty-eight adults were shown sixty sets of three target locations in a sparse virtual environment with three beacons. The targets were drawn from one of four prior distributions. They were then asked to point to the targets after a delay and a change in perspective. While searches were biased towards the beacons, we did not find any evidence that participants successfully exploited the prior distributions of targets. These results suggest that allocentric reasoning does not conform to normative Bayesian models: we saw no evidence for use of priors in our cognitively-complex (allocentric) task, unlike in previous, simpler (egocentric) recall tasks. It is possible that this reflects the high biological cost of processing precise allocentric information.