Cargando…
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
Gene expression profiles are useful for assessing the efficacy and side effects of drugs. In this paper, we propose a new generative model that infers drug molecules that could induce a desired change in gene expression. Our model—the Bidirectional Adversarial Autoencoder—explicitly separates cellul...
Autores principales: | Shayakhmetov, Rim, Kuznetsov, Maksim, Zhebrak, Alexander, Kadurin, Artur, Nikolenko, Sergey, Aliper, Alexander, Polykovskiy, Daniil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182000/ https://www.ncbi.nlm.nih.gov/pubmed/32362822 http://dx.doi.org/10.3389/fphar.2020.00269 |
Ejemplares similares
-
Addendum: Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
por: Polykovskiy, Daniil, et al.
Publicado: (2020) -
The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
por: Kadurin, Artur, et al.
Publicado: (2016) -
Cross-Adversarial Learning for Molecular Generation in Drug Design
por: Wu, Banghua, et al.
Publicado: (2022) -
Abnormal ECG detection based on an adversarial autoencoder
por: Shan, Lianfeng, et al.
Publicado: (2022)