Cargando…

Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data

The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying...

Descripción completa

Detalles Bibliográficos
Autores principales: Delhomme, Tiffany M, Avogbe, Patrice H, Gabriel, Aurélie A G, Alcala, Nicolas, Leblay, Noemie, Voegele, Catherine, Vallée, Maxime, Chopard, Priscilia, Chabrier, Amélie, Abedi-Ardekani, Behnoush, Gaborieau, Valérie, Holcatova, Ivana, Janout, Vladimir, Foretová, Lenka, Milosavljevic, Sasa, Zaridze, David, Mukeriya, Anush, Brambilla, Elisabeth, Brennan, Paul, Scelo, Ghislaine, Fernandez-Cuesta, Lynnette, Byrnes, Graham, Calvez-Kelm, Florence L, McKay, James D, Foll, Matthieu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182099/
https://www.ncbi.nlm.nih.gov/pubmed/32363341
http://dx.doi.org/10.1093/nargab/lqaa021
_version_ 1783526179575169024
author Delhomme, Tiffany M
Avogbe, Patrice H
Gabriel, Aurélie A G
Alcala, Nicolas
Leblay, Noemie
Voegele, Catherine
Vallée, Maxime
Chopard, Priscilia
Chabrier, Amélie
Abedi-Ardekani, Behnoush
Gaborieau, Valérie
Holcatova, Ivana
Janout, Vladimir
Foretová, Lenka
Milosavljevic, Sasa
Zaridze, David
Mukeriya, Anush
Brambilla, Elisabeth
Brennan, Paul
Scelo, Ghislaine
Fernandez-Cuesta, Lynnette
Byrnes, Graham
Calvez-Kelm, Florence L
McKay, James D
Foll, Matthieu
author_facet Delhomme, Tiffany M
Avogbe, Patrice H
Gabriel, Aurélie A G
Alcala, Nicolas
Leblay, Noemie
Voegele, Catherine
Vallée, Maxime
Chopard, Priscilia
Chabrier, Amélie
Abedi-Ardekani, Behnoush
Gaborieau, Valérie
Holcatova, Ivana
Janout, Vladimir
Foretová, Lenka
Milosavljevic, Sasa
Zaridze, David
Mukeriya, Anush
Brambilla, Elisabeth
Brennan, Paul
Scelo, Ghislaine
Fernandez-Cuesta, Lynnette
Byrnes, Graham
Calvez-Kelm, Florence L
McKay, James D
Foll, Matthieu
author_sort Delhomme, Tiffany M
collection PubMed
description The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying to identify low abundance mutations, such as subclonal mutations, tumour-derived alterations in body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive variant caller, which directly learns from the data the level of systematic sequencing errors to accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be dynamically estimated from analysing multiple samples together. We show that the sequencing error rate varies across alterations, illustrating the need to precisely estimate it. We evaluate the performance of needlestack for various types of variations, and we show that needlestack is robust among positions and outperforms existing state-of-the-art method for low abundance mutations. Needlestack, along with its source code is freely available on the GitHub platform: https://github.com/IARCbioinfo/needlestack.
format Online
Article
Text
id pubmed-7182099
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-71820992021-02-10 Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data Delhomme, Tiffany M Avogbe, Patrice H Gabriel, Aurélie A G Alcala, Nicolas Leblay, Noemie Voegele, Catherine Vallée, Maxime Chopard, Priscilia Chabrier, Amélie Abedi-Ardekani, Behnoush Gaborieau, Valérie Holcatova, Ivana Janout, Vladimir Foretová, Lenka Milosavljevic, Sasa Zaridze, David Mukeriya, Anush Brambilla, Elisabeth Brennan, Paul Scelo, Ghislaine Fernandez-Cuesta, Lynnette Byrnes, Graham Calvez-Kelm, Florence L McKay, James D Foll, Matthieu NAR Genom Bioinform Methart The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying to identify low abundance mutations, such as subclonal mutations, tumour-derived alterations in body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive variant caller, which directly learns from the data the level of systematic sequencing errors to accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be dynamically estimated from analysing multiple samples together. We show that the sequencing error rate varies across alterations, illustrating the need to precisely estimate it. We evaluate the performance of needlestack for various types of variations, and we show that needlestack is robust among positions and outperforms existing state-of-the-art method for low abundance mutations. Needlestack, along with its source code is freely available on the GitHub platform: https://github.com/IARCbioinfo/needlestack. Oxford University Press 2020-04-20 /pmc/articles/PMC7182099/ /pubmed/32363341 http://dx.doi.org/10.1093/nargab/lqaa021 Text en © World Health Organization and the authors, 2020. All rights reserved. The World Health Organization and the authors have granted the Publisher permission for the reproduction of this article. https://creativecommons.org/licenses/by/3.0/igo/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 IGO License (https://creativecommons.org/licenses/by/3.0/igo/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methart
Delhomme, Tiffany M
Avogbe, Patrice H
Gabriel, Aurélie A G
Alcala, Nicolas
Leblay, Noemie
Voegele, Catherine
Vallée, Maxime
Chopard, Priscilia
Chabrier, Amélie
Abedi-Ardekani, Behnoush
Gaborieau, Valérie
Holcatova, Ivana
Janout, Vladimir
Foretová, Lenka
Milosavljevic, Sasa
Zaridze, David
Mukeriya, Anush
Brambilla, Elisabeth
Brennan, Paul
Scelo, Ghislaine
Fernandez-Cuesta, Lynnette
Byrnes, Graham
Calvez-Kelm, Florence L
McKay, James D
Foll, Matthieu
Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title_full Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title_fullStr Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title_full_unstemmed Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title_short Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
title_sort needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data
topic Methart
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182099/
https://www.ncbi.nlm.nih.gov/pubmed/32363341
http://dx.doi.org/10.1093/nargab/lqaa021
work_keys_str_mv AT delhommetiffanym needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT avogbepatriceh needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT gabrielaurelieag needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT alcalanicolas needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT leblaynoemie needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT voegelecatherine needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT valleemaxime needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT chopardpriscilia needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT chabrieramelie needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT abediardekanibehnoush needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT gaborieauvalerie needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT holcatovaivana needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT janoutvladimir needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT foretovalenka needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT milosavljevicsasa needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT zaridzedavid needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT mukeriyaanush needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT brambillaelisabeth needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT brennanpaul needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT sceloghislaine needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT fernandezcuestalynnette needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT byrnesgraham needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT calvezkelmflorencel needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT mckayjamesd needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata
AT follmatthieu needlestackanultrasensitivevariantcallerformultisamplenextgenerationsequencingdata