Cargando…

Identification of differential expression genes related to anthocyanin biosynthesis in carmine radish (Raphanus sativus L.) fleshy roots using comparative RNA-Seq method

Radish (Raphanus sativus L.), is an important root vegetable crop grown worldwide, and it contains phyto-anthocyanins. However, only limited studies have been conducted to elucidate the molecular mechanisms underlying anthocyanin biosynthesis in the different color variants of the radish fleshy root...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jian, Li, Wen-Bo, Liu, Hong-Fang, Chen, Fa-Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182184/
https://www.ncbi.nlm.nih.gov/pubmed/32330148
http://dx.doi.org/10.1371/journal.pone.0231729
Descripción
Sumario:Radish (Raphanus sativus L.), is an important root vegetable crop grown worldwide, and it contains phyto-anthocyanins. However, only limited studies have been conducted to elucidate the molecular mechanisms underlying anthocyanin biosynthesis in the different color variants of the radish fleshy root. In this study, Illumina paired-end RNA-sequencing was employed to characterize the transcriptomic changes in seven different types of radish fleshy roots. Approximately, 126 co-modulated differentially expressed genes were obtained, and most DEGs were more likely to participate in anthocyanin biosynthesis, including two transcription factors RsMYB_9 and RsERF070, and four functional genes RsBRICK1, RsBRI1-like2, RsCOX1, and RsCRK10. In addition, some related genes such as RsCHS, RsCHI, RsANS, RsMT2-4, RsUF3GT, glutathione S-transferase F12, RsUFGT78D2-like and RsUDGT-75C1-like significantly contributed to the regulatory mechanism of anthocyanin biosynthesis in the radish cultivars. Furthermore, gene ontology analysis revealed that the anthocyanin-containing compound biosynthetic process, anthocyanin-containing compound metabolic process, and significantly enriched pathways of the co-modulated DEGs were overrepresented in these cultivars. These results will expand our understanding of the complex molecular mechanism underlying anthocyanin synthesis-related genes in radish.