Cargando…
Diversity increases the stability of ecosystems
In 1972, Robert May showed that diversity is detrimental to an ecosystem since, as the number of species increases, the ecosystem is less stable. This is the so-called diversity-stability paradox, which has been derived by considering a mathematical model with linear interactions between the species...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182201/ https://www.ncbi.nlm.nih.gov/pubmed/32330134 http://dx.doi.org/10.1371/journal.pone.0228692 |
_version_ | 1783526198703292416 |
---|---|
author | Arese Lucini, Francesca Morone, Flaviano Tomassone, Maria Silvina Makse, Hernán A. |
author_facet | Arese Lucini, Francesca Morone, Flaviano Tomassone, Maria Silvina Makse, Hernán A. |
author_sort | Arese Lucini, Francesca |
collection | PubMed |
description | In 1972, Robert May showed that diversity is detrimental to an ecosystem since, as the number of species increases, the ecosystem is less stable. This is the so-called diversity-stability paradox, which has been derived by considering a mathematical model with linear interactions between the species. Despite being in contradiction with empirical evidence, the diversity-stability paradox has survived the test of time for over 40+ years. In this paper we first show that this paradox is a conclusion driven solely by the linearity of the model employed in its derivation which allows for the neglection of the fixed point solution in the stability analysis. The linear model leads to an ill-posed solution and along with it, its paradoxical stability predictions. We then consider a model ecosystem with nonlinear interactions between species, which leads to a stable ecosystem when the number of species is increased. The saturating non linear term in the species interaction is analogous to a Hill function appearing in systems like gene regulation, neurons, diffusion of information and ecosystems The exact fixed point solution of this model is based on k-core percolation and shows that the paradox disappears. This theoretical result, which is exact and non-perturbative, shows that diversity is beneficial to the ecosystem in agreement with analyzed experimental evidence. |
format | Online Article Text |
id | pubmed-7182201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71822012020-05-05 Diversity increases the stability of ecosystems Arese Lucini, Francesca Morone, Flaviano Tomassone, Maria Silvina Makse, Hernán A. PLoS One Research Article In 1972, Robert May showed that diversity is detrimental to an ecosystem since, as the number of species increases, the ecosystem is less stable. This is the so-called diversity-stability paradox, which has been derived by considering a mathematical model with linear interactions between the species. Despite being in contradiction with empirical evidence, the diversity-stability paradox has survived the test of time for over 40+ years. In this paper we first show that this paradox is a conclusion driven solely by the linearity of the model employed in its derivation which allows for the neglection of the fixed point solution in the stability analysis. The linear model leads to an ill-posed solution and along with it, its paradoxical stability predictions. We then consider a model ecosystem with nonlinear interactions between species, which leads to a stable ecosystem when the number of species is increased. The saturating non linear term in the species interaction is analogous to a Hill function appearing in systems like gene regulation, neurons, diffusion of information and ecosystems The exact fixed point solution of this model is based on k-core percolation and shows that the paradox disappears. This theoretical result, which is exact and non-perturbative, shows that diversity is beneficial to the ecosystem in agreement with analyzed experimental evidence. Public Library of Science 2020-04-24 /pmc/articles/PMC7182201/ /pubmed/32330134 http://dx.doi.org/10.1371/journal.pone.0228692 Text en © 2020 Arese Lucini et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Arese Lucini, Francesca Morone, Flaviano Tomassone, Maria Silvina Makse, Hernán A. Diversity increases the stability of ecosystems |
title | Diversity increases the stability of ecosystems |
title_full | Diversity increases the stability of ecosystems |
title_fullStr | Diversity increases the stability of ecosystems |
title_full_unstemmed | Diversity increases the stability of ecosystems |
title_short | Diversity increases the stability of ecosystems |
title_sort | diversity increases the stability of ecosystems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182201/ https://www.ncbi.nlm.nih.gov/pubmed/32330134 http://dx.doi.org/10.1371/journal.pone.0228692 |
work_keys_str_mv | AT areselucinifrancesca diversityincreasesthestabilityofecosystems AT moroneflaviano diversityincreasesthestabilityofecosystems AT tomassonemariasilvina diversityincreasesthestabilityofecosystems AT maksehernana diversityincreasesthestabilityofecosystems |