Cargando…
Melt Blending Modification of Commercial Polystyrene with Its Half Critical Molecular Weight, High Ion Content Ionomer, Poly(styrene–ran–cinnamic Acid) Zn Salt, toward Heat Resistance Improvement
A half-critical weight-average molecular weight ([Formula: see text]) (approximately 21,000 g mol(−1)), high-ion-content Zn-salt poly(styrene–ran–cinnamic-acid) (SCA–Zn) ionomer was successfully synthesized by styrene–cinnamic-acid (10.8 mol %) copolymerization followed by excess-ZnO melt neutraliza...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182858/ https://www.ncbi.nlm.nih.gov/pubmed/32150975 http://dx.doi.org/10.3390/polym12030584 |
Sumario: | A half-critical weight-average molecular weight ([Formula: see text]) (approximately 21,000 g mol(−1)), high-ion-content Zn-salt poly(styrene–ran–cinnamic-acid) (SCA–Zn) ionomer was successfully synthesized by styrene–cinnamic-acid (10.8 mol %) copolymerization followed by excess-ZnO melt neutralization. At 220 °C, the SCA–Zn’s viscosity was only approximately 1.5 magnitude orders higher than that of commercial polystyrene (PS) at 10(2) s(−1), and the PS/SCA–Zn (5–40 wt %) melt blends showed apparently fine, two-phased morphologies with blurred interfaces, of which the 95/5 and 90/10 demonstrated Han plots suggesting their near miscibility. These indicate that any PS–(SCA–Zn) processability mismatch was minimized by the SCA–Zn’s half-critical [Formula: see text] despite its dense ionic cross-links. Meanwhile, the SCA–Zn’s Vicat softening temperature (VST) was maximized by its cross-linking toward 153.1 °C, from that (97.7 °C) of PS, based on its half-critical [Formula: see text] at which the ultimate glass-transition temperature was approximated. Below approximately 110 °C, the PS/SCA–Zn (0–20 wt %) were seemingly miscible when their VST increased linearly yet slightly with the SCA–Zn fraction due to the dissolution of the SCA–Zn’s cross-links. Nevertheless, the 60/40 blend’s VST significantly diverged positively from the linearity until 111.1 °C, revealing its phase-separated morphology that effectively enhanced the heat resistance by the highly cross-linked SCA–Zn. This work proposes a methodology of improving PS heat resistance by melt blending with its half-critical [Formula: see text] , high-ion-content ionomer. |
---|