Cargando…
5-Channel Polymer/Silica Hybrid Arrayed Waveguide Grating
A 5-channel polymer/silica hybrid arrayed waveguide grating (AWG), fabricated through a simple and low-cost microfabrication process is proposed, which covers the entire O-band (1260–1360 nm) of the optical communication wavelength system. According to the simulation results, the insertion loss is l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182877/ https://www.ncbi.nlm.nih.gov/pubmed/32164181 http://dx.doi.org/10.3390/polym12030629 |
Sumario: | A 5-channel polymer/silica hybrid arrayed waveguide grating (AWG), fabricated through a simple and low-cost microfabrication process is proposed, which covers the entire O-band (1260–1360 nm) of the optical communication wavelength system. According to the simulation results, the insertion loss is lower than 4.7 dB and the crosstalk within 3-dB bandwidth is lower than ~−28 dB. The actual fiber–fiber insertion loss is lower than 14.0 dB, and the crosstalk of the 5 channels is less than −13.0 dB. The demonstrated AWG is ideally suitable for optical communications, but also has potential in the multi-channel sensors. |
---|