Cargando…
Direct Conjugation of Streptavidin to Encoded Hydrogel Microparticles for Multiplex Biomolecule Detection with Rapid Probe-Set Modification
Encoded hydrogel microparticles synthesized via flow lithography have drawn attention for multiplex biomarker detection due to their high multiplex capability and solution-like hybridization kinetics. However, the current methods for preparing particles cannot achieve a flexible, rapid probe-set mod...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182943/ https://www.ncbi.nlm.nih.gov/pubmed/32138163 http://dx.doi.org/10.3390/polym12030546 |
Sumario: | Encoded hydrogel microparticles synthesized via flow lithography have drawn attention for multiplex biomarker detection due to their high multiplex capability and solution-like hybridization kinetics. However, the current methods for preparing particles cannot achieve a flexible, rapid probe-set modification, which is necessary for the production of various combinations of target panels in clinical diagnosis. In order to accomplish the unmet needs, streptavidin was incorporated into the encoded hydrogel microparticles to take advantage of the rapid streptavidin–biotin interactions that can be used in probe-set modification. However, the existing methods suffer from low efficiency of streptavidin conjugation, cause undesirable deformation of particles, and impair the assay capability. Here, we present a simple and powerful method to conjugate streptavidin to the encoded hydrogel microparticles for better assay performance and rapid probe-set modification. Streptavidin was directly conjugated to the encoded hydrogel microparticles using the aza-Michael addition click reaction, which can proceed in mild, aqueous condition without catalysts. A highly flexible and sensitive assay was developed to quantify DNA and proteins using streptavidin-conjugated encoded hydrogel microparticles. We also validated the potential applications of our particles conducting multiplex detection of cancer-related miRNAs. |
---|