Cargando…
Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6
The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183073/ https://www.ncbi.nlm.nih.gov/pubmed/32183128 http://dx.doi.org/10.3390/polym12030657 |
_version_ | 1783526358977085440 |
---|---|
author | Vasiljević, Jelena Čolović, Marija Čelan Korošin, Nataša Šobak, Matic Štirn, Žiga Jerman, Ivan |
author_facet | Vasiljević, Jelena Čolović, Marija Čelan Korošin, Nataša Šobak, Matic Štirn, Žiga Jerman, Ivan |
author_sort | Vasiljević, Jelena |
collection | PubMed |
description | The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process. |
format | Online Article Text |
id | pubmed-7183073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71830732020-05-01 Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 Vasiljević, Jelena Čolović, Marija Čelan Korošin, Nataša Šobak, Matic Štirn, Žiga Jerman, Ivan Polymers (Basel) Article The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process. MDPI 2020-03-13 /pmc/articles/PMC7183073/ /pubmed/32183128 http://dx.doi.org/10.3390/polym12030657 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vasiljević, Jelena Čolović, Marija Čelan Korošin, Nataša Šobak, Matic Štirn, Žiga Jerman, Ivan Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title | Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title_full | Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title_fullStr | Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title_full_unstemmed | Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title_short | Effect of Different Flame-Retardant Bridged DOPO Derivatives on Properties of in Situ Produced Fiber-Forming Polyamide 6 |
title_sort | effect of different flame-retardant bridged dopo derivatives on properties of in situ produced fiber-forming polyamide 6 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183073/ https://www.ncbi.nlm.nih.gov/pubmed/32183128 http://dx.doi.org/10.3390/polym12030657 |
work_keys_str_mv | AT vasiljevicjelena effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 AT colovicmarija effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 AT celankorosinnatasa effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 AT sobakmatic effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 AT stirnziga effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 AT jermanivan effectofdifferentflameretardantbridgeddopoderivativesonpropertiesofinsituproducedfiberformingpolyamide6 |