Cargando…
lncRNA DLX6-AS1 Promotes Proliferation of Laryngeal Cancer Cells by Targeting the miR-26a/TRPC3 Pathway
PURPOSE: Laryngeal cancer is the most prevalent tumor type in head and neck cancers. Early diagnosis is considered as an important strategy for improving prognosis. The lncRNA DLX6-AS1 has been shown to modulate tumor phenotypes in several types of cancer, but the role of DLX6-AS1 in laryngeal cance...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183358/ https://www.ncbi.nlm.nih.gov/pubmed/32368147 http://dx.doi.org/10.2147/CMAR.S237181 |
Sumario: | PURPOSE: Laryngeal cancer is the most prevalent tumor type in head and neck cancers. Early diagnosis is considered as an important strategy for improving prognosis. The lncRNA DLX6-AS1 has been shown to modulate tumor phenotypes in several types of cancer, but the role of DLX6-AS1 in laryngeal cancer and its concrete mechanisms are not clear. METHODS: Tissue samples from laryngeal cancer patients and corresponding clinical data were used for detailed analysis. The laryngeal cancer cell lines HEp-2 and Tu-177 were studied. Cell proliferation, ROS production, mitochondrial respiratory function, intracellular and mitochondrial calcium influx were assessed. Western blotting, quantitative RT-PCR and luciferase assays were used to analyze the interactions. A xenografted tumor model was established to analyze the effects of DLX6-AS1 on tumor growth in vivo. RESULTS: lncRNA DLX6-AS1 had increased expression in tumor tissues compared with adjacent normal tissues and in higher clinical stages compared with lower stages, which was associated with poor prognosis. In detail, DLX6-AS1 knockdown decreased cell proliferation and affected key mitochondrial metabolic parameters in both HEp-2 and Tu-177 cells. Moreover, DLX6-AS1 knockdown suppressed TRPC3-mediated mitochondrial calcium uptake and ROS production. Furthermore, miR-26a functioned as a link between these two molecules, as it could be absorbed by DLX6-AS1 and thus regulated the levels of TRPC3. Finally, the DLX6-AS1/miR-26a/TRPC3 axis modulated laryngeal cancer proliferation both in vitro and in vivo. CONCLUSION: This study provides new evidence that a novel lncRNA, DLX6-AS1, regulates mitochondrial calcium homeostasis, respiration and tumor proliferation via modulating the miR-26a/TRPC3 axis in laryngeal cancer. |
---|