Cargando…

Artificial intelligence abstracts from the European Congress of Radiology: analysis of topics and compliance with the STARD for abstracts checklist

OBJECTIVES: To analyze all artificial intelligence abstracts presented at the European Congress of Radiology (ECR) 2019 with regard to their topics and their adherence to the Standards for Reporting Diagnostic accuracy studies (STARD) checklist. METHODS: A total of 184 abstracts were analyzed with r...

Descripción completa

Detalles Bibliográficos
Autores principales: Dratsch, Thomas, Caldeira, Liliana, Maintz, David, dos Santos, Daniel Pinto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183515/
https://www.ncbi.nlm.nih.gov/pubmed/32335763
http://dx.doi.org/10.1186/s13244-020-00866-7
Descripción
Sumario:OBJECTIVES: To analyze all artificial intelligence abstracts presented at the European Congress of Radiology (ECR) 2019 with regard to their topics and their adherence to the Standards for Reporting Diagnostic accuracy studies (STARD) checklist. METHODS: A total of 184 abstracts were analyzed with regard to adherence to the STARD criteria for abstracts as well as the reported modality, body region, pathology, and use cases. RESULTS: Major topics of artificial intelligence abstracts were classification tasks in the abdomen, chest, and brain with CT being the most commonly used modality. Out of the 10 STARD for abstract criteria analyzed in the present study, on average, 5.32 (SD = 1.38) were reported by the 184 abstracts. Specifically, the highest adherence with STARD for abstracts was found for general interpretation of results of abstracts (100.0%, 184 of 184), clear study objectives (99.5%, 183 of 184), and estimates of diagnostic accuracy (96.2%, 177 of 184). The lowest STARD adherence was found for eligibility criteria for participants (9.2%, 17 of 184), type of study series (13.6%, 25 of 184), and implications for practice (20.7%, 44 of 184). There was no significant difference in the number of reported STARD criteria between abstracts accepted for oral presentation (M = 5.35, SD = 1.31) and abstracts accepted for the electronic poster session (M = 5.39, SD = 1.45) (p = .86). CONCLUSIONS: The adherence with STARD for abstract was low, indicating that providing authors with the related checklist may increase the quality of abstracts.