Cargando…

GiniClust3: a fast and memory-efficient tool for rare cell type identification

BACKGROUND: With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large dataset...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Rui, Yuan, Guo-Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183612/
https://www.ncbi.nlm.nih.gov/pubmed/32334526
http://dx.doi.org/10.1186/s12859-020-3482-1
Descripción
Sumario:BACKGROUND: With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. RESULTS: Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. CONCLUSIONS: Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.