Cargando…
GiniClust3: a fast and memory-efficient tool for rare cell type identification
BACKGROUND: With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large dataset...
Autores principales: | Dong, Rui, Yuan, Guo-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183612/ https://www.ncbi.nlm.nih.gov/pubmed/32334526 http://dx.doi.org/10.1186/s12859-020-3482-1 |
Ejemplares similares
-
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
por: Jiang, Lan, et al.
Publicado: (2016) -
GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection
por: Tsoucas, Daphne, et al.
Publicado: (2018) -
kClust: fast and sensitive clustering of large protein sequence databases
por: Hauser, Maria, et al.
Publicado: (2013) -
ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements
por: Ozer, Egon A.
Publicado: (2018) -
GenClust: A genetic algorithm for clustering gene expression data
por: Di Gesú, Vito, et al.
Publicado: (2005)