Cargando…
Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges
Chest X-ray radiography and computed tomography, the two mainstay modalities in thoracic radiology, are under active investigation with deep learning technology, which has shown promising performance in various tasks, including detection, classification, segmentation, and image synthesis, outperform...
Autores principales: | Hwang, Eui Jin, Park, Chang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183830/ https://www.ncbi.nlm.nih.gov/pubmed/32323497 http://dx.doi.org/10.3348/kjr.2019.0821 |
Ejemplares similares
-
Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
2020 Clinical Practice Guideline for Percutaneous Transthoracic Needle Biopsy of Pulmonary Lesions: A Consensus Statement and Recommendations of the Korean Society of Thoracic Radiology
por: Yoon, Soon Ho, et al.
Publicado: (2021) -
Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs
por: Huh, Jung Eun, et al.
Publicado: (2023) -
Effects of Implementing Artificial Intelligence-Based Computer-Aided Detection for Chest Radiographs in Daily Practice on the Rate of Referral to Chest Computed Tomography in Pulmonology Outpatient Clinic
por: Hong, Wonju, et al.
Publicado: (2023) -
Practice Pattern of Transthoracic Needle Biopsy: 2016 Survey in the Members of Korean Society of Thoracic Radiology
por: Jo, Yeseul, et al.
Publicado: (2017)