Cargando…

Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping

Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Shichen, Kang, Kyungnam, Shayan, Kamran, Yoshimura, Anthony, Dadras, Siamak, Wang, Xiaotian, Zhang, Lihua, Chen, Siwei, Liu, Na, Jindal, Apoorv, Li, Xiangzhi, Pasupathy, Abhay N., Vamivakas, A. Nick, Meunier, Vincent, Strauf, Stefan, Yang, Eui-Hyeok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184740/
https://www.ncbi.nlm.nih.gov/pubmed/32341412
http://dx.doi.org/10.1038/s41467-020-15877-7
_version_ 1783526644383744000
author Fu, Shichen
Kang, Kyungnam
Shayan, Kamran
Yoshimura, Anthony
Dadras, Siamak
Wang, Xiaotian
Zhang, Lihua
Chen, Siwei
Liu, Na
Jindal, Apoorv
Li, Xiangzhi
Pasupathy, Abhay N.
Vamivakas, A. Nick
Meunier, Vincent
Strauf, Stefan
Yang, Eui-Hyeok
author_facet Fu, Shichen
Kang, Kyungnam
Shayan, Kamran
Yoshimura, Anthony
Dadras, Siamak
Wang, Xiaotian
Zhang, Lihua
Chen, Siwei
Liu, Na
Jindal, Apoorv
Li, Xiangzhi
Pasupathy, Abhay N.
Vamivakas, A. Nick
Meunier, Vincent
Strauf, Stefan
Yang, Eui-Hyeok
author_sort Fu, Shichen
collection PubMed
description Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS(2) monolayers in the chemical vapor deposition growth. The iron atoms substitute molybdenum sites in MoS(2) crystals, as confirmed by transmission electron microscopy and Raman signatures. We uncover an Fe-related spectral transition of Fe:MoS(2) monolayers that appears at 2.28 eV above the pristine bandgap and displays pronounced ferromagnetic hysteresis. The microscopic origin is further corroborated by density functional theory calculations of dipole-allowed transitions in Fe:MoS(2). Using spatially integrating magnetization measurements and spatially resolving nitrogen-vacancy center magnetometry, we show that Fe:MoS(2) monolayers remain magnetized even at ambient conditions, manifesting ferromagnetism at room temperature.
format Online
Article
Text
id pubmed-7184740
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71847402020-04-30 Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping Fu, Shichen Kang, Kyungnam Shayan, Kamran Yoshimura, Anthony Dadras, Siamak Wang, Xiaotian Zhang, Lihua Chen, Siwei Liu, Na Jindal, Apoorv Li, Xiangzhi Pasupathy, Abhay N. Vamivakas, A. Nick Meunier, Vincent Strauf, Stefan Yang, Eui-Hyeok Nat Commun Article Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS(2) monolayers in the chemical vapor deposition growth. The iron atoms substitute molybdenum sites in MoS(2) crystals, as confirmed by transmission electron microscopy and Raman signatures. We uncover an Fe-related spectral transition of Fe:MoS(2) monolayers that appears at 2.28 eV above the pristine bandgap and displays pronounced ferromagnetic hysteresis. The microscopic origin is further corroborated by density functional theory calculations of dipole-allowed transitions in Fe:MoS(2). Using spatially integrating magnetization measurements and spatially resolving nitrogen-vacancy center magnetometry, we show that Fe:MoS(2) monolayers remain magnetized even at ambient conditions, manifesting ferromagnetism at room temperature. Nature Publishing Group UK 2020-04-27 /pmc/articles/PMC7184740/ /pubmed/32341412 http://dx.doi.org/10.1038/s41467-020-15877-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Fu, Shichen
Kang, Kyungnam
Shayan, Kamran
Yoshimura, Anthony
Dadras, Siamak
Wang, Xiaotian
Zhang, Lihua
Chen, Siwei
Liu, Na
Jindal, Apoorv
Li, Xiangzhi
Pasupathy, Abhay N.
Vamivakas, A. Nick
Meunier, Vincent
Strauf, Stefan
Yang, Eui-Hyeok
Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title_full Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title_fullStr Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title_full_unstemmed Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title_short Enabling room temperature ferromagnetism in monolayer MoS(2) via in situ iron-doping
title_sort enabling room temperature ferromagnetism in monolayer mos(2) via in situ iron-doping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184740/
https://www.ncbi.nlm.nih.gov/pubmed/32341412
http://dx.doi.org/10.1038/s41467-020-15877-7
work_keys_str_mv AT fushichen enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT kangkyungnam enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT shayankamran enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT yoshimuraanthony enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT dadrassiamak enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT wangxiaotian enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT zhanglihua enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT chensiwei enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT liuna enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT jindalapoorv enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT lixiangzhi enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT pasupathyabhayn enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT vamivakasanick enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT meuniervincent enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT straufstefan enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping
AT yangeuihyeok enablingroomtemperatureferromagnetisminmonolayermos2viainsituirondoping