Cargando…
Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG
Presurgical investigations for categorizing focal patterns are crucial, leading to localization and surgical removal of the epileptic focus. This paper presents a machine learning approach using information theoretic features extracted from high-frequency subbands to detect the epileptic focus from...
Autores principales: | Akter, Most. Sheuli, Islam, Md. Rabiul, Iimura, Yasushi, Sugano, Hidenori, Fukumori, Kosuke, Wang, Duo, Tanaka, Toshihisa, Cichocki, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184764/ https://www.ncbi.nlm.nih.gov/pubmed/32341371 http://dx.doi.org/10.1038/s41598-020-62967-z |
Ejemplares similares
-
Statistical Features in High-Frequency Bands of Interictal iEEG Work Efficiently in Identifying the Seizure Onset Zone in Patients with Focal Epilepsy
por: Akter, Most. Sheuli, et al.
Publicado: (2020) -
Seizure onset zone identification using phase-amplitude coupling and multiple machine learning approaches for interictal electrocorticogram
por: Miao, Yao, et al.
Publicado: (2022) -
Epileptic seizure focus detection from interictal electroencephalogram: a survey
por: Islam, Md. Rabiul, et al.
Publicado: (2022) -
Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG
por: Sui, Linfeng, et al.
Publicado: (2021) -
Granger Causality Analysis of Interictal iEEG Predicts Seizure Focus and Ultimate Resection
por: Park, Eun-Hyoung, et al.
Publicado: (2018)